DELAMINOMYCINS, NOVEL EXTRACELLULAR MATRIX RECEPTOR ANTAGONIST

III. PHYSICO-CHEMICAL PROPERTIES AND STRUCTURE ELUCIDATION OF DELAMINOMYCINS B AND C

Mitsuhiro Ueno, Tetsuya Someno, Ryuichi Sawa[†], Hironobu Iinuma[†], Hiroshi Naganawa[†], Masaaki Ishizuka^{*} and Tomio Takeuchi

Institute for Chemotherapy, Microbial Chemistry Research Foundation, 18-24 Aza-Motono, Miyamoto, Numazu-shi, Shizuoka 410-03, Japan [†]Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

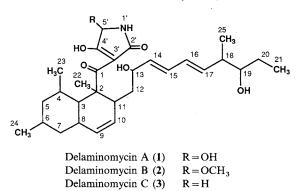
(Received for publication February 4, 1993)

As a result of our screening for inhibitors of cell adhesion to fibronectin (FN) and laminin (LM), components of the extracellular matrix (ECM), delaminomycin A (1, Fig. 1), a novel compound possessing an acyl tetramic acid moiety¹), has been isolated from the culture broth of *Streptomyces albulus* MJ202-72F3 which was deposited in the Fermentation Research Institute of the Agency of Industrial Science and Technology, Japan, with the accession No. FERM P-12674²). The strain also produced some compounds related to delaminomycin A as minor components. In this paper, we report the physico-chemical properties and structural elucidation of two components, delaminomycins B (2, Fig. 1) and C (3, Fig. 1). These compounds 2 and 3 also inhibited the binding of Con A stimulated-EL4 cells to FN and LM components of ECM^{2} .

The profile of purification procedures for delaminomycins are shown in Fig. 2. Briefly, 2 and 3were purified by centrifugal partition chromatography (CPC), preparative reverse phase HPLC and Sephadex LH-20, successively. We isolated 30 mg of 2 and 13 mg of 3 as amorphous colorless powders from 10 liters of cultured broth.

The physico-chemical properties of 2 and 3 are summarized in Table 1.

The ultraviolet spectra of 2 and 3 were almost identical with that of 1 having two absorption maxima at 232 nm and $286 \sim 288$ nm in methanol, suggesting the presence of α , β -unsaturated ketone. The molecular formulae of 2 and 3 were determined to be $C_{30}H_{45}NO_6$ and $C_{29}H_{43}NO_5$, respectively, by HRFAB-MS and ¹³C NMR analyses.


The structure of 1 ($C_{29}H_{43}NO_6$) has been determined by spectroscopic analyses. Complete ¹H and ¹³C NMR assignments for 1 have been reported¹). Thus, the structural elucidation of 2 and 3 has been carried out spectroscopically by comparing of the data with those of 1.

Numbering shown in Fig. 1 is used to facilitate discussion of structure determination.

Combined analyses of ¹H-¹H COSY, ¹³C-¹H COSY, and heteronuclear multiple bond correlation as well as ¹H NMR and ¹³C NMR spectra indicated that the carbon skeleton of the three compounds was identical, and that they differed in the pyrrolidine moiety. The characteristic ultraviolet spectra of **2** and **3** suggested the preservation of acyl tetramic acid moiety^{3~7}.

The ¹H NMR spectrum of 2 indicated the presence of one OCH₃ group on the basis of chemical shift

Fig. 1. Structure of delaminomycins A, B and C.

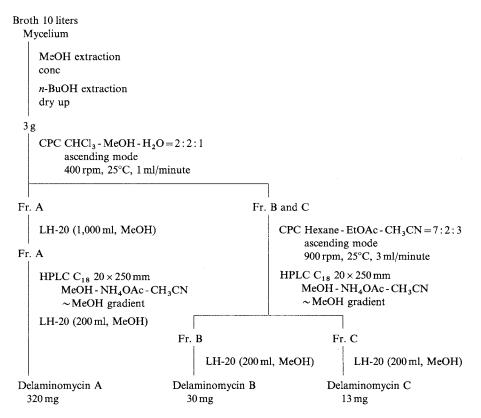


Table 1. Physico-chemical properties of delaminomycins B (2) and C (3).

Compound	2	3		
Appearance	Colorless powder	Colorless powder		
Molecular formula	$C_{30}H_{45}NO_{6}$	$C_{29}H_{43}NO_5$		
Molecular weight	515	485		
HRFAB-MS $((M-H)^-, m/z)$	Calcd for $C_{30}H_{44}NO_6$	Calcd for C ₂₉ H ₄₂ NO ₅		
Calcd:	514.3169	484.3063		
Found:	514.3163	484.3071		
UV λ_{\max}^{MeOH} nm (E ^{1%} _{1 cm})	232 (563), 288 (138)	232 (530), 286 (144)		
IR $v_{\text{max}}^{\text{KBr}}$ cm ⁻¹	3400, 2950, 2900, 1670, 1600, 1430, 1400, 1100	3400, 2950, 2900, 1650, 1560, 1430, 1400, 900		
Solubility: Soluble	MeOH, DMSO	MeOH, DMSO		
Insoluble	<i>n</i> -Hexane, EtOAc, H_2O	n-Hexane, EtOAc, H ₂ O		
Color reaction: Positive	Vanillin - $H_2SO_4^{b}$	Vanillin - H ₂ SO ₄ ^b		
Negative	Ninhydrin, dragendorff	Ninhydrin, dragendorff		
Rf value on silica gel TLC ^a	0.74	0.77		

^a Merck Kieselgel 60 F₂₅₄ Art. 5554: 2-PrOH - NH₄OH - H₂O (9:1:2).

^b Purple red.

(δ 3.28) and its intensity (3H) as shown in Table 2. The ¹³C NMR spectra of 1 and 2 were quite similar to each other except for one methoxy carbon signal at δ_c 52.6 absent in 1 (Table 3). The FAB-MS spectra of 1 and 2 showed a similar pattern with a mass difference of 14 daltons. Other chemical shifts of 29 carbon signals of 1 and 2 were almost identical. Therefore, the difference of structures between 1 and 2 was attributable to the replacement of >CH-OH in 1 with $>CH-OCH_3$ in 2 at C-5' on the pyrrolidine

Proton -	Chemical shifts (δ) in ppm					
	1	2	3			
3	1.90 m ^a	1.80 m ^a	1.69 m ^a			
4	1.30 m ^a	1.34 m ^a	1.47 m ^a			
5	1.11 m ^a , 1.71 m ^a	1.02 m ^a , 1.64 m ^a	1.12 m ^a , 1.69 m ^a			
6	1.63 m	1.62 m	1.66 m			
7	0.91 m ^a , 1.81 m ^a	0.88 m ^a , 1.79 m ^a	0.91 m ^a , 1.82 m ^a			
8	1.81 m ^a	1.77 m ^a	1.86 m ^a			
9	5.39 m	5.40 m	5.47 m			
10	5.80 m	5.77 m	5.80 m			
11	3.27 br	2.99 br	2.82 br			
12	1.06 m ^a , 1.78 m ^a	1.21 m ^a , 1.47 m ^a	1.26 m ^a , 1.41 m ^a			
13	4.03 m	4.02 m	4.07 m			
14	5.48 dd (6.0, 15.2) ^b	5.50 dd (6.2, 15.0)	5.48 dd (6.2, 14.4)			
15	6.13 dd (10.0, 15.2)	6.10 dd (10.0, 15.0)	6.02 dd (10.0, 14.4)			
16	5.79 m	5.99 dd (10.0, 15.0)	6.01 dd (10.0, 15.0)			
17	5.57 dd (8.2, 15.2)	5.57 dd (8.0, 15.0)	5.58 dd (8.0, 15.0)			
18	2.17 m	2.17 m	2.18 m			
19	3.22 m	3.22 m	3.24 m			
20	1.28 m ^a , 1.48 m ^a	1.29 m ^a , 1.53 m ^a	1.30 m ^a , 1.53 m ^a			
21	0.91 dd (7.2, 7.2)	0.92 dd (7.0, 7.0)	0.94 dd (6.2, 6.2)			
22	1.50 s	1.41 s	1.53 s			
23	0.84 d (6.2)	0.72 d (6.2)	0.78 d (6.2)			
24	0.92 d (6.0)	0.91 d (6.0)	0.94 d (6.2)			
25	0.99 d (6.0)	1.00 d (6.0)	1.01 d (6.4)			
5'	4.82 s	4.77 s	3.72 br s			
5'-OCH3		3.28 s				

Table 2. ¹H NMR chemical shifts of 1, 2 and 3 in methanol- d_4 (400 MHz).

^a Overlapping signals.

^b J-values are in parentheses (Hz).

Table 3. ¹³C NMR chemical shifts of 1, 2 and 3 in methanol- d_4 (100 MHz).

Carbon No.	Chemical shifts (δ) in ppm			Carbon	Chemical shifts (δ) in ppm		
	1	2	3	No.	1	2	3
1	204.8 s	204.2 s	203.3 s	16	131.6 d	131.0 d	130.9 d
2	51.5 s	51.6 s	50.5 s	17	138.1 d	137.8 d	138.2 d
3	45.5 d	46.4 d	45.5 d	18	44.3 d	44.3 d	44.3 d
4	40.5 d	38.6 d	38.9 d	19	78.1 d	77.9 d	77.9 d
5	48.3 t	47.8 t	47.6 t	20	28.3 t	28.4 t	28.4 t
6	35.7 d	34.8 d	34.9 d	21	11.0 q	10.7 q	10.7 q
7	44.3 t	44.2 t	43.7 t	22	15.4 q	16.4 q	16.3 q
8	43.5 d	41.9 d	42.3 d	23	24.3 q	23.7 q	23.5 q
9	130.8 d	131.0 d	131.5 d	24	22.9 q	22.8 q	22.8 q
10	129.1 d	128.6 d	128.0 d	25	16.5 q	16.4 q	16.3 q
11	37.2 d	38.6 d	44.3 d	2'	181.5 s	179.6 s	179.8 s
12	43.6 t	43.8 t	44.0 t	3'	101.3 s	104.4 s	103.0 s
13	71.6 d	71.0 d	70.5 d	4'	192.9 s	189.2 s	192.6 s
14	137.1 d	136.7 d	136.4 d	5'	79.7 d	86.1 d	51.1 t
15	131.0 d	130.6 d	130.9 d	5'-OCH3		52.6 q	

ring as shown in Fig. 1.

The diene system was established to be 14E,16E based on the coupling constants $(J_{14,15}=15.0 \text{ Hz},$

 $J_{16,17} = 15.0$ Hz). Thus, the structure of **2** was concluded to be 3-[[2-[(3E,5E)-2,8-dihydroxy-7-methyl-3,5-decadienyl]-1,6,8-trimethyl-1,2,4a,5,6,-

7,8,8a-octahydro-1-naphthyl]carbonyl]-5-methoxy pyrrolidine-2,4-dione as shown in Fig. 1.

On the other hand, comparison of the ¹³C NMR data of **3** with that of **1** revealed an upfield shift of C-5' carbon on the pyrrolidine ring from δ 79.7 in **1** to δ 51.1 in **3**. By the DEPT experiment, C-5' carbon in **3** was shown to be a methylene. The remaining 28 carbon signals in the two compounds were almost identical. Accordingly, the difference between the two compounds could be attributable to presence or absence of a hydroxy group at C-5' position in **3**.

Thus, the structure of **3** was concluded to be 3-[[2-[(3E,5E)-2,8-dihydroxy-7-methyl-3,5-decadienyl]-1,6,8-trimethyl-1,2,4a,5,6,7,8,8a-octahydro-1-naphthyl]carbonyl]pyrrolidine-2,4-dione asshown in Fig. 1. The ¹³C chemical shifts for tetramicacid moiety of**3**were in good accordance with those $of lydicamycin as follows; C-2'; <math>\delta$ 179.8 vs δ 181.0, C-5'; δ 51.1 vs δ 50.7, C-4'; δ 192.6 vs δ 192.3)⁵⁾. Determination of the stereochemistry of **2** and **3** together with **1** remains to be elucidated.

References

 UENO, M.; T. SOMENO, R. SAWA, H. IINUMA, H. NAGANAWA, M. ISHIZUKA & T. TAKEUCHI: Delaminomycins, novel nonpeptide extracellular matrix receptor antagonist and a new class of potent immunomodulator. II. Physico-chemical properties and structure elucidation of delaminomycin A. J. Antibiotics 46: 972~978, 1993

- 2) UENO, M.; M. AMEMIYA, M. OSONO, N. KINOSHITA, T. IKEDA, H. IINUMA, M. HAMADA, M. ISHIZUKA & T. TAKEUCHI: Delaminomycins, novel nonpeptide extracellular matrix receptor antagonist and a new class of immunomodulator. I. Taxonomy, fermentation, isolation and biological activity. J. Antibiotics 46: 719~727, 1993
- STICKINGS, C. E.: Metabolites of Alternaria tenuis Auct.: The structure of tenuazonic acid. Biochem. J. 72: 332~340, 1959
- 4) HAYAKAWA, Y.; N. KANAMARU, A. SHIMAZU & H. SETO: Lydicamycin, a new antibiotic of a novel skeletal type. I. Taxonomy, fermentation, isolation and biological activity. J. Antibiotics 44: 282~287, 1991
- HAYAKAWA, Y.; N. KANAMARU, N. MORISAKI, K. FURIHATA & H. SETO: Lydicamycin, a new antibiotic of a novel skeletal type. II. Physico-chemical properties and structure elucidation. J. Antibiotics 44: 288~292, 1991
- 6) KARWOWSKI, J. P.; M. JACKSON, R. J. THERIAULT, G. J. BARLOW, L. COEN, D. M. HENSEY & P. E. HUMPHREY: Tirandalydigin, a novel tetramic acid of the tirandamycin-streptolydigin type. I. Taxonomy of the producing organism, fermentation and biological activity. J. Antibiotics 45: 1125~1132, 1992
- 7) KACZKA, E. A.; C. O. GITTERMAN, E. L. DULANEY, M. C. SMITH, D. HENDLIN, H. B. WOODRUFF & K. FOLKERS: Discovery of inhibitory activity of tenuazonic acid for growth of human adenocarcinoma-1. Biochem. Biophys. Res. Commun. 14: 54~57, 1964